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IMDB is an online platform for films, TV series, pod-
casts, videogames, and more, where users are free to ex-
press their opinions. In this study, we attempt to predict
whether a given review has a positive or negative senti-
ment through analyzing its contents. We preprocessed
50,000 IMDB reviews and then performed binary clas-
sification on the numerically vectorized reviews using
the Logistic Regression, KNN, LDA, QDA, and Random
Forest machine learning models.
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1. INTRODUCTION

Thinking of watching a movie tonight? Consider looking for a
review on IMDB, an online database of information about TV
series, movies, video games, and more. As a leading review site
in the film industry since 1990, IMDB has amassed millions of
ratings and reviews from users all across the world. The website
allows for users to input a rating (with 1 star being the lowest
and 10 stars the highest) along with a written review of the
content. In our project, we will conduct a sentiment analysis of
an IMDB dataset consisting of 50,000 entries of reviews on the
IMDB site. Our goal is to use statistical methodology to predict
the overall binary sentiment of each review using only the words
and phrases in each data entry.

2. PREPROCESSING

In order to accurately predict the sentiment of the IMDB reviews,
we first had to preprocess our dataset. Upon loading in our
dataset of IMDB reviews and sentiments, we conducted some
elementary, exploratory data analysis to understand the size
and balance of our dataset. Then, we converted our textual
data into a form that is suitable for statistical analysis using TF-
IDF. Finally, we utilized Principal Component Analysis (PCA)
to reduce the dimension of our data, improving computational
cost and efficiency. Each one of the steps we took will be broken
down in detail in the following sections.

2.1. Data Cleaning
Before conducting any sophisticated analysis, we first cleaned
the data to prepare for the later stages of experimentation and
analysis. The general process we took to clean the data included:

1. Removing html line breaks.

2. Converting all characters to lowercase.

3. Removing punctuation, special characters, numbers.

4. Removing stop words using tokenization.

By taking these steps to clean the data, we avoid muddling
the analysis with neutral, meaningless words such as "a" or
"the" in order to focus on keywords that might better predict
sentiment. Now that the data is clean, the exploratory data
analysis and visualization can begin.

2.2. Descriptive Statistics

In order to get a better grasp of the dataset, we constructed plots
to serve as visual representations of the data.

Fig. 1. A bar chart quantifying the amount of positive and
negative reviews.

Figure 1, shown above, displays the sentiment makeup of
the dataset. In this particular IMDB dataset, we have a perfect
balance of positive and negative reviews. This means we do not
have to perform any techniques such as SMOTE to balance the
dataset on our own.
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Fig. 2. Side-by-side boxplots displaying the length of positive
and negative reviews. Evidently, the negative and positive
reviews have similar distributions of lengths. However, the
positive review distribution contains more extreme outliers on
the higher end of the length range.

Fig. 3. The most common words in negative reviews.

Fig. 4. The most common words in positive reviews.

Comparing the two figures above, we can see that there is not
much difference between the two word clouds (aside from a few
words such as "bad" versus "good"), illustrating the need for a
more in-depth look at and analysis of the reviews.

2.3. TF-IDF
Because our review data is textual, we had to transform our data
from text to numbers. During data cleaning, we had already
removed line breaks, punctuation, special characters, numbers,
and stop words. However, to convert our textual review data
into a format suitable for analysis, we used TF-IDF, or Term
Frequency-Inverse Document Frequency. Here is a breakdown
of the method:

1. Term Frequency (TF): TF measures the frequency of each
term within a review, calculated as the ratio of term occur-
rences to the total number of terms in the review.

2. Inverse Document Frequency (IDF): IDF quantifies the im-
portance of a term across the entire set of reviews, computed
as the logarithm of the ratio of the total reviews to those
that contain the term.

3. TF-IDF Score: The TF-IDF score for a term in a document is
the product of its TF and IDF scores, creating a numerical
representation of the textual data. This results in a high-
dimensional vector space, which will be discussed further
in the following section.

2.4. Principal Component Analysis (PCA)
After performing TF-IDF on our reviews, the resulting vector-
ized data had extremely high dimensionality at 162,401 total
features. Since high-dimensional data is highly correlated, com-
putationally expensive to work with, and can hinder the per-
formance of some models, we performed Principal Component
Analysis, or PCA, to reduce the dimensionality of our data. By
doing so, we reduce the dimensionality of our data while re-
taining the most important information and minimizing the
loss of information. PCA accomplishes this by transforming the
original features into a new set of uncorrelated variables called
principal components. These components are ordered by the
amount of variance they explain in the data, allowing us to keep
the most significant information while discarding less critical
aspects.

In our case, PCA helps us overcome the above challenges as-
sociated with the high dimensionality of the TF-IDF vectorized
data. However, we first had to determine how many compo-
nents to use. We did so using a Scree plot to find the optimal
number of components.

Fig. 5. Explained variance for different amounts of PCA com-
ponents.

Scree plots display the number of principal components on
the x-axis and the corresponding explained variance on the y-
axis. Based on the curve above, we saw that there was not a
significant change in variance after 50 components, so we finally
performed PCA on our vectorized dataset with 50 components.

3. EXPERIMENT

In our pursuit of identifying the optimal model for prediction,
we employed four supervised learning algorithms.

3.1. Logistic Regression
Logistic regression analysis is a statistical technique to evalu-
ate the relationship between various predictor variables (either
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categorical or continuous) and an outcome which is binary (di-
chotomous). A common issue with modelling is over fitting
in which a model closely follows the training data set rather
than following the underlying pattern. Due to this, over fitted
models fail to translate to testing data sets and have no real
practicality. To lessen the odds of over-fitting, we will apply L2
regularization to avoid extreme coefficients.

In tuning our model, we focused on a single hyper-parameter,
namely the value of C, controlling the weight assigned to the
regularization penalty. Higher C values lead to a closer fit to
the training data, while lower values prioritize the penalty term
during coefficient computation. Employing Cross Validation,
we determined that C=5 produced the optimal choice. The test
set produced the following results:

Table 1. Logistic Regression Model - Performance

Precision Recall F1 Score Support

negative 0.85708 0.82485 0.84066 7525

positive 0.83011 0.86154 0.84553 7475

accuracy 0.84313 15000

macro average 0.84360 0.84319 0.84310 15000

weighted average 0.84364 0.84313 0.84309 15000

Fig. 6. An ROC curve of our Logistic Regression model with
optimal C.

The results show that the model performs equally strong
on negative reviews and positive reviews with both having f1-
scores of around 84 percent. In addition, the ROC curve is quite
good as the area under the curve (AUC) is around 0.92. An
ROC curve plots the True Positive Rate vs. False Poistive Rate at
different classification thresholds. Theoretically, the upper left
point where the TPR and FPR both equal 1 indicates the golden
standard. Lowering the classification threshold classifies more
items as positive, thus increasing both False Positives and True
Positives. Typically, an AUC value of 0.9 - 0.1 is excellent, 0.8-0.9
is very good, 0.7-0.8 is good, 0.6-0.7 is satisfactory, and 0.5-0.6 is
unsatisfactory.

3.2. K-Nearest Neighbor

K-Nearest Neighbors is simple approach to supervised machine
learning that creates a non-linear boundary by measuring zones

in which one response category dominates another. It is a non-
parametric model and there are no assumptions being made
about the underlying distribution of the data. Furthermore, it
generally performs well on large data sets which is advanta-
geous for our research since we have 50,000 samples in our data
set.

The K in K-Nearest Neighbors is an non-even hyperparam-
eter that determines how many of the neighbors will be con-
sidered when making a zone for each category. A small K can
lead to over sensitivity to noise, while a large K may lead to an
over-biased model. It is essential to choose the optimal K that
strikes the balance between variance and minimizing bias.

We find the optimal K using 5-Fold Cross Validation:

Fig. 7. Chart labelling each odd value of K and its correspond-
ing CV accuracy from 1 - 501

The chart illustrates that small value’s of K perform much
worse than values greater than 50. Interestingly, the drop off
as K becomes abnormally large seems much more shallow than
the drop off as K becomes increasingly small. Nonetheless, the
optimal value of K based on the chart is 151 as this maximizes
our cross validation accuracy of 79.72 percent on the training set.
Utilizing K = 151 we can produce our results on the testing set:

Table 2. KNN Model - Performance (Optimal K)

Precision Recall F1 Score Support

negative 0.81702 0.75894 0.78691 7525

positive 0.77353 0.82890 0.80026 7475

accuracy 0.79380 15000

macro average 0.79528 0.79392 0.79358 15000

weighted average 0.79535 0.79380 0.79356 15000

The results indicate that KNN is stronger at predicting pos-
itive reviews than negative reviews. The overall accuracy of
79.380 percent is quite good, but there is a significant drop off
between the accuracy of KNN and the accuracy of Logistic Re-
gression found previously. Due to this, and the extreme com-
putation cost of running a high dimensional KNN model, other
models may be preferred in this instance. The results also in-
dicate minimal overfitting in our model due to tuning, as the
testing accuracy was around 79.38 percent, a statistic very similar
to the 79.72 percent found on the training set.
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Fig. 8. An ROC curve showing the performance of our KNN
model with optimal K

3.3. Linear and Quadratic Discriminant Analysis

Linear Discriminant Analysis and Quadratic Discriminant Anal-
ysis differ from the previous models in two major ways.

First, LDA and QDA are generative models, meaning that
they capture the joint probability of their response variable and
its predictors. This differs from Logistic Regression and KNN be-
cause those are discriminate models that capture the conditional
probability of response given the predictors. While generative
models are more flexible than discriminate models, they are
more sensitive to outlier.

The second key difference is that, LDA and QDA make the as-
sumption that the data comes from multivariate normal distribu-
tion. Similarly to KNN, LDA and QDA are both non-parametric
models which is a main cause for their aforementioned flexibility.
LDA is a special case of QDA because its boundary is strictly
linear while QDA often has a quadratic boundary and differing
covariance matrices for both classes.

After fitting our models and using five fold cross validation,
we find that LDA has a training accuracy of 83.79 percent while
QDA has a training accuracy of 78.18 percent.

We ran the models on our test set:

Table 3. LDA Model - Performance

Precision Recall F1 Score Support

negative 0.86254 0.80385 0.83216 7525

positive 0.81520 0.87104 0.84219 7475

accuracy 0.83733 15000

macro average 0.83887 0.83745 0.83718 15000

weighted average 0.83895 0.83733 0.83716 15000

The results show a clear performance difference as LDA’s
testing accuracy of 83.733 percent vastly outperformed QDA’s
testing accuracy of 78.167 percent. Since both LDA and Lo-
gistic Regression have linear decision boundaries, it is of no
surprise that with Logistic Regression performing well, LDA fol-
lowed suit. Additionally, our testing results were very similar to
the training results, demonstrating little overfitting. Both ROC
curves also show that our models were quite good, with LDA
covering 92 percent of the area and QDA covering 85 percent.

Fig. 9. The ROC curve of our LDA model.

Table 4. QDA Model - Performance

Precision Recall F1 Score Support

negative 0.80125 0.75110 0.77536 7525

positive 0.76428 0.81244 0.78763 7475

accuracy 0.78167 15000

macro average 0.78277 0.78177 0.78149 15000

weighted average 0.78283 0.78167 0.78147 15000

Fig. 10. The ROC curve of our QDA model.

3.4. Random Forests
Random Forests are the last model we used to analyze the IMDB
data. Random forests are built from decision ’trees’ hence the
name. These decision trees are built from nodes that split the
data two ways into leaves repeatedly until samples are appro-
priately classified. Each split depends on the value of only one
variable and the quality of that split is measured by its impurity.
The impurity is a measure of how ’pure’ each leaf of the split is
in the sense of having only one class within the leaf.

So each decision tree is made up of nodes with each split
leading to leaves below it until the data is sorted enough. This
’enough’ is measured using a stop-splitting rule which tells us
when the improvement from adding a new leaf isn’t worth the
corresponding increase in bias and processing time.

A random forest is composed of ntree decision trees. These
decision trees are created by first drawing ntree bootstrap sam-
ples. Then we build a tree by creating a subset of the p variables
and then using the variable with the best result to split the node.
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We repeat this until halted by our stop-splitting rule.
Once we have grown ntree number of trees we classify our

data by inputting each sample into every decision tree and then
taking the majority vote of the trees as the sample’s final classifi-
cation. Since each decision tree in the forest was trained using
a different set of predictors the resulting forest will have high
predictive power.

Fig. 11. A graph showing the increase in accuracy correspond-
ing to a different number of trees (represented by nestimators).

The question of how large ntree should be is primarily deter-
mined by available computational power. As you can see from
the graph above, at first the performance of the model is greatly
improved by each additional tree but the addition rapidly stag-
nates. This means that there is not much difference between
100 trees and 1000 trees. For our analysis, we chose to use 100
trees. The model was trained with the 50 principal components
from our PCA as predictors and then the sentiment of the review
(positive or negative) as the response variable.

Random forests come with several hyperparameters (tree
depth, number of trees, and feature selection method). It is vital
to tune these parameters to achieve optimal values. There are
several methods for testing different combinations of these pa-
rameters including grid search or random search, but generally,
the goal of tuning is to improve model accuracy and its ability
to model new data.

We used cross-validation via grid search to find other best hy-
perparameters and found that in addition to n_estimators =
100, the max_ f eatures = ”auto”, max_depth = 100,
minsamples_split = 12, minsamples_lea f = 4, bootstrap = True
were the best hyperparameters given by cross-validation. The
classification report of this final model and its ROC curve are
displayed below

Table 5. Random Forest - Performance (Best Hyperparame-
ters)

Precision Recall F1 Score Support

negative 0.82395 0.80545 0.81460 7525

positive 0.80848 0.82676 0.81751 7475

accuracy 0.81607 15000

macro average 0.81622 0.81610 0.81606 15000

weighted average 0.81624 0.81607 0.81605 15000

Fig. 12. The ROC curve of our random forest model with best
hyperparameters.

We can see that the testing accuracy of 81.607 percent and
ROC curve, which covers about 90% of the area, are quite good.
F1-scores are both fairly high and there is little variation in
score across positive and negative sentiments. The remaining
error is likely due to difficulties classifying or possibly having
suboptimal hyperparameters.

4. CONCLUSION AND SUMMARY

In the following sections, we will give a recap of our methods
and analysis, along with some remarks on our results.

4.1. Results and Analysis
The first, perhaps most important, step of comparing model
efficacy is looking at overall accuracy percentages. The table
below displays accuracy for each model we used.

Table 6. Model Accuracies

Model Accuracy (%)

Logistic Regression 84.31

KNN 79.38

LDA 83.73

QDA 78.17

Random Forest 81.61

Evidently, logistic regression had the highest accuracy, fol-
lowed closely by LDA. QDA performed the worst. Intuitively,
this makes sense since LDA and logistic regression are (com-
putationally) the most similar models out of the methods we
used, and their similar accuracy reinforces their high strength in
predicting sentiment for our dataset. Additionally, our data is
not thought to be normally distributed, so it makes sense that
logistic regression outperformed LDA.

At the bottom of the accuracy list are KNN and QDA at a
respective 79% and 78%. Once again, it makes sense that KNN
and QDA may have similarly low accuracy scores due to their
tendency to overfit. In other words, KNN and QDA may have
been too flexible with the training data, capturing noise and
specific patterns that don’t generalize well to new, unseen data.
The lower accuracy scores for KNN and QDA suggest that their
decision boundaries might be overly tailored to the training
dataset’s oddities.
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It’s worth noting that KNN and QDA could possibly benefit
from methods such as regularization, which can reduce variance
and help overfitting at the cost of introducing some bias into the
model fitting process. However, due to the strong performance
of logistic regression and LDA, we decided it was not necessary
to attempt to address potential overfitting problems with QDA
and KNN.

The random forest method ended up being middle of the
road as far as accuracy goes at 81.61%. While it did demonstrate
some effectiveness due to its superior accuracy rate over QDA
and KNN, its computational cost was considerably higher than
logistic regression, making it a worse, less efficient choice for a
final model.

To go further in quantifying the performance of our various
models, we also generated recall, precision, and F1 scores for
each model for the positive and negative classifications.

Table 7. Model Comparison - "Negative" Classification

Model Precision Recall F1 Score

Logistic 0.8571 0.8249 0.8407

KNN 0.7735 0.8289 0.8003

LDA 0.8625 0.8039 0.8322

QDA 0.8013 0.7511 0.7754

Random Forest 0.8240 0.8055 0.8146

The table above displays the results for the negative side
of precision, recall and F1 scores. Unsurprisingly, logistic re-
gression and LDA come in as the best performers overall, and
especially for the precision column. Interestingly enough, LDA
has a slightly higher precision score than logistic regression,
meaning that when it predicts negative class, it is slightly more
accurate than logistic regression. However, the difference in this
case is so small that it is negligible.

Once again, QDA is the worst performing method, being the
only method with recall and F1 scores dipping well below the
0.8 level. This means QDA frequently has false positives, and the
model struggles to balance precision and recall for the negative
class.

Table 8. Model Comparison - "Positive" Classification

Model Precision Recall F1 Score

Logistic 0.8301 0.8615 0.8455

KNN 0.8170 0.7589 0.7869

LDA 0.8152 0.8710 0.8422

QDA 0.7643 0.8124 0.7876

Random Forest 0.8085 0.8268 0.8175

The positive table above tells the same tale; logistic regression
and LDA are high performers, while QDA and KNN sit at the
bottom and random forest takes the middle ground. Once again,
this suggests that LDA and logistic regression correctly predict
positive sentiments the strong majority of the time, while QDA
and KNN are a level below.

Overall, the positive and negative tables simply reinforce
the accuracy statistics for each model. The optimal prediction
method seems to be logistic regression, closely followed by LDA,
while KNN and QDA are generally methods to avoid if aiming
for a high accuracy. While random forest had a decent perfor-
mance, its computational cost makes it a less desirable technique
to use for predicting sentiment.

4.2. Final Comments and Reflection
Across the board, our models were very effective in predicting
the sentiment of IMDB reviews. Their accuracies were signifi-
cantly above 50% (which would be the approximate percentage
corresponding to randomly guessing "positive" or "negative").
Although our models were robust, there are a couple concerns
that might have affected our results negatively.

Correlated reviews: The sentiments for a singular movie (or
film series) likely has some correlation with each other. Because
the reviews are publicly available, any potential, future reviewer
may be biased by the reviews currently on the site. For instance,
a movie with extremely negative reviews may cause future re-
viewers to have a more negative sentiment than they otherwise
would have. Although this introduces some correlation between
data points and we did not take it into account, the effect is likely
minimal and our results are not threatened by it.

Additional models: We tested a total of five methods (KNN,
QDA, LDA, logistic regression, and random forest) but there
are certainly more available techniques out there for prediction.
With these models alone, we managed to achieve a high accuracy
rating and did not feel that it is necessary to use even more
models, but it is possible that there is a better technique out
there.

Model complexity: The models we used are relatively stan-
dard and void of any highly sophisticated tools. There are of
course many more options that may aid prediction accuracy or
improve the performance of a specific model. As mentioned
before, QDA’s low performance could have been partially due to
overfitting and might have benefitted from a technique like regu-
larization. However, for our needs, logistic regression (where we
did utilize regularization) and LDA were more than sufficient
and we did not feel the need to introduce further methodology.
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